Oligo (dT)₂₀ primer

Cat. No.: SM701-0050 Concentration: 50 µM

Size: 50 µl

Store at -20°C in a non-frost-free freezer

Guaranteed stable for 6 months when properly stored

Description

Oligo(d \dot{T})₂₀ primer is a string of 20 deoxythymidylic acid residues that hybridizes to the poly(A) tail of mRNA and can be used as a primer for the first strand cDNA synthesis with the reverse transcriptase. The primer is supplied in the DEPC water at a concentration of 50 μ M.

Applications

cDNA synthesis with a reverse transcriptase

Quality control

> The quality of the oligo (dT)20 primer is tested on a lot-to-lot basis to ensure consistent product quality.

Required Materials

> Equipments for reverse transcription

Oligo (dT)20 primerProtocol

We recommend using 1 μ I of oligo(dT)₂₀ primer per 20 μ I reverse transcription reaction.

Troubleshooting

Refer to the table below to troubleshoot problems that you may encounter when reverse transcription with the kit.

Problem	Cause	Solution
Low or no amplification in RT-PCR	Incorrect primer design	Review the recommendations on reverse transcription primer types for specific RNA templates. For example, use random primers, instead of the oligo(dT) ₂₀ , for bacterial RNA or RNA lacking a poly(A) tail, as well as for potentially degraded RNA.
	Poor RNA integrity	Minimize the number of freeze-thaw cycles of RNA samples to prevent degradation. Avoid RNase contamination by following laboratory best practices.

Caution

- During operation, always wear a lab coat, disposable gloves, and protective equipment.
- > Research Use Only.