# SimplyGreen qPCR Master Mix, No Rox



 Cat. No.: SQ103-0100
 Size: 100 rxns

 Cat. No.: SQ103-0020
 Size: 20 rxns (f

 Storage: Stable for up to 1 year at -20°C
 Size: 20 rxns

Size: 100 rxns (for 20 µl/ rxns) / 200 rxns (for 10 µl/ rxns) Size: 20 rxns (for 20 µl/ rxns) / 40 rxns (for 10 µl/ rxns)

#### Description

A 2X concentrated mix of *Taq* polymerase, dNTPs, MgCl<sub>2</sub>, fluorescent dye (detection), and proprietary buffer components, the SimplyGreen qPCR Master Mix, No Rox provides a convenient, reliable and robust set-up for performing quantitative real-time analysis of DNA samples. Designed specifically for the aforementioned niche of application, the components of SimplyGreen qPCR Master Mix, No Rox promise topnotch performance with respect to sensitivity, signal-to-noise ratio and elimination of primer dimers. Furthermore, the proprietary chemical modification of the DNA polymerase included in this mastermix allows for hot-start PCR, conferring a significant reduction in non-specific PCR amplification that is otherwise of a common occurrence with regular Taq polymerases.

Based on the fact that the qPCR instruments can vary from user to user, we suggest that the SimplyGreen qPCR Master Mix, No Rox is compatible with qPCR instrument: BioRad® CFX96, CFX384, Chromo4<sup>™</sup>, CFX Connect<sup>™</sup>, Opticon 2, MiniOpticon<sup>™</sup>; Roche LightCycler® (2.0, 1.5, 480, 1536,Nano); MJ Research Opticon <sup>™</sup>, Opticon <sup>™</sup>2, Chromo® 4; Corbett Rotor-gene® (3000,6200, 62H0, 6500, 65H0, 6600).

### **Kit contents**

| Contents                            | SQ103-0100 | SQ103-0020 |
|-------------------------------------|------------|------------|
| SimplyGreen qPCR Master Mix, No Rox | 1000 µl    | 200 µl     |

### **Required Materials**

➢ Real-time PCR tubes
➢ Real-time PCR instrument
➢ RNase-Free H₂O

### **Real-time PCR Instrument**

| Product Name                 | Real-time PCR Instrument                                                                        |
|------------------------------|-------------------------------------------------------------------------------------------------|
| SimplyGreen qPCR Master Mix, | BioRad <sup>®</sup> CFX96, CFX384, Chromo4 <sup>™</sup> , CFX Connect <sup>™</sup> , Opticon 2, |
| No Rox                       | MiniOpticon™, Roche LightCycler® (480, 1536, Nano)                                              |
|                              | MJ Research Opticon™, Opticon™ 2, Chromo® 4, Enigma® ML                                         |
|                              | Eppendorf <sup>®</sup> Realplex 4, BioGene SynChron™                                            |
|                              | Corbett Rotor-gene® (3000, 6200, 62H0, 6500, 65H0, 6600)                                        |
|                              | Eppendorf Mastercycler® realplex (s, 4 , 4s), Pro (S, 384),                                     |
|                              | Nexus (gradient, eco, flat), Cepheid SmartCycler®, GeneXpert                                    |
|                              | Idaho LightScanner® (24, 32), RapidCycler®2, R.A.P.I.D (LT, LT Food),                           |
|                              | RAZOR EX, JBAIDS, Qiagen Rotor-Gene™ (Q, 6000), Takara Dice™                                    |
|                              | Thermo Scientific PikoReal, DNA-Technology DT96, DTlite, DT-322                                 |
|                              | Bioer LineGene (3310/3320, K FQD-48A, I, II, 9620, 9640, 9660, 9680)                            |
|                              | Bioneer Exicycler™                                                                              |

#### Application

Gene Expression (mRNA) Analysis

> microRNA & Noncoding RNA Analysis

### **Storage Conditions**

Upon arrival, the SimplyGreen qPCR Master Mix, No Rox should be stored at -20°C and protected from light. After each experiment, the leftover thawed mix can be stored at 4°C if it is to be used within the next 3 months. Avoid repeated freeze-thaw cycles to retain maximum performance. The SimplyGreen qPCR Master Mix, No Rox is stable for 1 year from the date of shipping when stored and handled properly.

Genetic Variation Analysis

#### Protocol

1. Thaw the SimplyGreen qPCR Master Mix, No Rox, template DNA, primers and nuclease-free water on ice. Mix each solution well.

2. Set up the following reaction mixture (10 µl or 20 µl reaction volume):

| Components                          | 10 µl Reaction | 20 µl Reaction | <b>Final Concentration</b> |
|-------------------------------------|----------------|----------------|----------------------------|
| SimplyGreen qPCR Master Mix, No Rox | 5 µl           | 10 µl          | 1X                         |
| Forward Primer (10 µM)              | 0.3 µl         | 0.6 µl         | 300 nM                     |
| Reverse Primer (10 µM)              | 0.3 µl         | 0.6 µl         | 300 nM                     |
| Template DNA                        | Variable       | Variable       | ≤500 ng/reaction           |
| Nuclease-free H <sub>2</sub> O      | to 10 µl       | to 20 µl       |                            |

3. Perform qPCR reactions using the following cycling program:

| Step                                               | Temperuture | Duration        | Duration    | Cycle(s) |
|----------------------------------------------------|-------------|-----------------|-------------|----------|
|                                                    |             | (Standard Mode) | (Fast Mode) |          |
| Enzyme Activation                                  | 95°C        | 10 minutes      | 20 seconds  | 1        |
| Denaturation                                       | 95°C        | 15 seconds      | 3 seconds   | 30-35    |
| Annealing/ Extension                               | 60°C        | 60 seconds      | 30 seconds  |          |
| Melting Curve Refer to specific guidelines for ins |             |                 | ument used  |          |

Note:

Optimal conditions for amplification will vary depending on the primers and thermal cycler used. It may be necessary to optimize the system for individual primers, template, and thermal cycler.

#### Recommendations for Optimal Results:

- > Aliquot reagents to avoid contamination and repeated freeze-thaw cycles.
- Ideally, start the PCR as soon as the reaction mixture is prepared. If not, then make sure that the reaction mixture is kept chilled till starting up the PCR.
- > For gDNA amplification, use 2 minutes enzyme activation time instead of 30 seconds.
- > 10 15 seconds annealing/extension time is preferred unless restricted by the software.
- SimplyGreen qPCR Master Mix, no Rox components are light sensitive and therefore, avoid prolonged direct exposure to light.

## Troubleshooting

Refer to the table below to troubleshoot problems that you may encounter when quantify of nucleic acid targets with the kit.

| Trouble                                             | Cause                                                           | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Poor Signal<br>or No Signal                         | Inhibitor Present                                               | <ol> <li>Perform a dilution series of the PCR template<br/>to determine whether the effect of the inhibitory<br/>agent can be reduced.</li> <li>Take extra care with the nucleic acid extraction<br/>steps to minimize carryover of PCR inhibitors.</li> </ol>                                                                                                                                                                                                                  |
|                                                     | Degraded<br>Template Materiall                                  | <ol> <li>Do not store diluted template in water or at low<br/>concentrations.</li> <li>Check the integrity of template material by<br/>automated or manual gel electrophoresis.</li> </ol>                                                                                                                                                                                                                                                                                      |
| Signal in<br>Negative Control                       | Contamination of<br>Reaction Components<br>with Target Sequence | <ol> <li>To minimize the possibility of contamination of<br/>PCR components by PCR product or other<br/>template, designate a work area exclusively for<br/>PCR assay setup.</li> <li>Use a solution of 10% bleach instead of ethanol<br/>to prepare the workstation area for PCR assay<br/>setup. Ethanol will only induce precipitation of<br/>DNA in your work area, while the 10% bleach<br/>solution will hydrolyze, as well as dissolve, any<br/>residual DNA.</li> </ol> |
| Poor Reproducibility<br>Across Replicate<br>Samples | Inhibitor Present                                               | <ol> <li>Perform a dilution series of the PCR template to<br/>determine whether the effect of the inhibitory<br/>agent can be reduced.</li> <li>Take extra care with the nucleic acid extraction<br/>steps to minimize carryover of PCR inhibitors.</li> </ol>                                                                                                                                                                                                                  |
|                                                     | Primer Design                                                   | 1. Verify primers design at different annealing temperatures.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Low or High<br>Reaction Efficiency                  | Primer- Dimer                                                   | <ol> <li>Reduce primer concentration.</li> <li>Evaluate primer sequences for complementarity<br/>and secondary structure. Redesign primers if<br/>necessary.</li> <li>Perform melt-curve analysis to determine if<br/>primer- dimers are present.</li> </ol>                                                                                                                                                                                                                    |
|                                                     | Insufficient Optimization                                       | 1. Use a thermal gradient to identify the optimal thermal cycling conditions for a specific primer set.                                                                                                                                                                                                                                                                                                                                                                         |

### Caution

1. Shake gently before use to avoid foaming and low-speed centrifugation.

2. Reduce the exposure time.

This product is not available for hybridization probe method.
 During operation, always wear a lab coat, disposable gloves, and protective equipment.
 Research Use Only. Not intended for any animal or human therapeutic or diagnostic uses.

### **Related Ordering Information**

| Cat. No.   | Description                                          | Size          |
|------------|------------------------------------------------------|---------------|
| SN017-0100 | Total RNA Isolation Kit (Blood Cultured Cell Fungus) | 100 Reactions |
| SN020-0100 | Total RNA Isolation Kit (Plant)                      | 100 Reactions |
| SN016-0100 | Virus Nucleic Acid Isolation Kit                     | 100 Reactions |
| SM303-0050 | GScript RTase                                        | 50 Reactions  |
| SM305-0050 | GScript First-Strand Synthesis Kit                   | 50 Reactions  |